(over)Interpreting the Higgs "signal"

Lian-Tao Wang University of Chicago

Fermilab theory seminar, May 24, 2012

The signal

- A hint of light Higgs signal around 124-126 GeV.

Tevatron

- It's the Higgs boson. Measured the last parameter of the Standard Model.

- It's the Higgs boson. Measured the last parameter of the Standard Model.
- It's the Higgs boson. Implications for new physics scenarios.

- It's the Higgs boson. Measured the last parameter of the Standard Model.
- It's the Higgs boson. Implications for new physics scenarios.
- It's not the Higgs boson. Radion, ...

- It's the Higgs boson. Measured the last parameter of the Standard Model.
- It's the Higgs boson. Implications for new physics scenarios.
- It's not the Higgs boson. Radion, ...
- It's not a signal. Hidden Higgs, no Higgs.

- It's the Higgs boson. Measured the last parameter of the Standard Model.

This talk

- It's the Higgs boson. Implications for new physics scenarios.
- It's not the Higgs boson. Radion, ...
- It's not a signal. Hidden Higgs, no Higgs.

Why new physics?

- Large classes of new physics models have partners: SUSY, little Higgs, etc.
- Partners couples to Higgs.

Why new physics?

- Electroweak precision.
 - ▶ 125 GeV is fine, but somewhat more uncomfortable than 115 or 90. NP to fix it?

Why new physics?

- Electroweak precision.
 - ▶ 125 GeV is fine, but somewhat more uncomfortable than 115 or 90. NP to fix it?

More: Dark matter, baryogensis

How might NP show up?

- Being directly produced and detected at the LHC.
 - SUSY: superpartners.
 - Composite Higgs (extra dim): resonances.
- Modification of Higgs production and decay.

How might NP show up?

- Being directly produced and detected at the LHC.
 - SUSY: superpartners.
 - Composite Higgs (extra dim): resonances.
- Modification of Higgs production and decay.

gg→h enhancement?

- Maybe not.
- No excess in WW.

$h \rightarrow \gamma \gamma$ higher than SM prediction?

$h \rightarrow \gamma \gamma$ higher than SM prediction?

- Over interpreting, of course.
- But, it is fun to see what it might mean if this is true.

This talk.

- Higgs mass in SUSY.
- Enhancement of $h \rightarrow \gamma \gamma$.
- A possible connection with EWPT.

Higgs in SUSY.

~ 70 papers so far, > 80% on SUSY

- Implications of $m_h = 125$ GeV?
- Accommodate significant modifications of Higgs pheno?

SUSY and $m_h = 125$ GeV

- SUSY prefers light Higgs.
 - A bit heavy for MSSM. But certainly possible.

Giudice, Strumia, 2011

- Is heavy scalar reasonable? Maybe.
- De Could have benefits: flavor, CP.

In detail:

Carena, Gori, Shah, Wagner. 1112.3336

$$m_h^2 \simeq M_Z^2 \cos^2 2\beta + \frac{3}{4\pi^2} \frac{m_t^4}{v^2} \left[\frac{1}{2} \tilde{X}_t + t + \frac{1}{16\pi^2} \left(\frac{3}{2} \frac{m_t^2}{v^2} - 32\pi\alpha_3 \right) \left(\tilde{X}_t t + t^2 \right) \right]$$
$$t = \log \frac{M_{\text{SUSY}}^2}{m_t^2} \qquad \tilde{X}_t = \frac{2\tilde{A}_t^2}{M_{\text{SUSY}}^2} \left(1 - \frac{\tilde{A}_t^2}{12M_{\text{SUSY}}^2} \right)$$

Extensions of MSSM

- MSSM
 - ▶ Higgs quartic from SM D-term

$$m_h^2 = m_Z^2 \cos^2 2\beta + \text{loop}$$
 $\log \left(\frac{M_{\text{SUSY}}}{M_{\text{top}}}\right)$

- m_h = 125 GeV needs M_{SUSY} ≫ M_{top}
- Extensions → new quartic coupling?
 - ▶ F-term models NMSSM,

Extended gauge symmetry

- New non-decoupling D-term.
- Simplest possibility, a new U(1)'.
 - SSB near weak scale.
 - ▶ Higgs charged under this U(1)', $q_h \neq 0$.
- A new U(1)' also implies additional states.
 - New Higgs field for the U(1)'.
 - Could have new exotics from anomaly cancellation.

Batra, Delgado, Kaplan, Tait, hep-ph/0309149 Maloney, Pierce, Wacker, hep-ph/0409127 Zhang, An, Ji, Mohapatra, 0804.0268

Choice of U(1)'

- Many candidates for U(1)'.
- $U(1)_{PQ}$ is interesting.
 - \triangleright Connection to the μ -problem.
 - \triangleright q_h \neq 0, by definition.
- $U(1)_{PQ}$ breaking can be quite involved. We focus on a simplified scenario.
 - PQ symmetry breaking scale fpQ > Mz'
 - ▶ Integrate out the radial modes.

Work in progess with Haipeng An and Tao Liu

Effect of vector multiplet

- SSB by Ψ_i

$$\begin{split} & \Psi_{\mathbf{i}} = f_{i}e^{q_{i}\mathbf{A}/f_{\mathrm{PQ}}}, f_{\mathrm{PQ}}^{2} = \sum_{i}q_{i}^{2}f_{i}^{2} \\ & \mathbf{A} = \frac{1}{\sqrt{2}}(s+ia) + \sqrt{2}\theta\tilde{a} + \theta^{2}F \\ & \mathbf{K}_{\mathrm{PQ}} = \sum_{i}f_{i}^{2}\exp\left(\frac{q_{i}(\mathbf{A}+\mathbf{A}^{\dagger})}{f_{\mathrm{PQ}}} + 2g_{\mathrm{PQ}}q_{i}\mathbf{V}_{\mathrm{PQ}}\right) - 2\kappa\mathbf{V}_{\mathrm{PQ}} \\ & W_{H} = \lambda SH_{u}H_{d}, \ V_{\mathrm{soft}} = A_{\lambda}\lambda SH_{u}H_{d} \end{split}$$

 We will further integrate out the saxion and the vector.

Effective Higgs potential

- Integrating out saxion and massive U(1).

$$V = (|\mu_{\text{eff}}|^2 + m_{H_u}^2)|H_u|^2 + (|\mu_{\text{eff}}|^2 + m_{H_d}^2)|H_d|^2 - 2B_{\mu}|H_uH_d|$$

$$+ \frac{1}{8}(g^2 + g'^2)(|H_u|^2 - |H_d|^2)^2 - g_{\text{PQ}}q_{H_u}\langle D_{\text{PQ}}\rangle(|H_u|^2 + |H_d|^2)$$

$$+ a_1|H_uH_d|^2 + a_2(|H_u|^2 + |H_d|^2)^2 + a_3|H_uH_d|(|H_u|^2 + |H_d|^2) .$$

$$a_1 = \frac{1}{2}\lambda^2 - \frac{4A_{\lambda}^2\lambda^2q_{H_u}^2f_S^2}{M_s^2f_{\text{PQ}}^2} ,$$

$$a_2 = \frac{1}{2}g_{\text{PQ}}^2q_{H_u}^2 - \frac{f_{\text{PQ}}^2q_{H_u}^2}{M_s^2} \left(g_{\text{PQ}}^2 - \frac{2\lambda^2f_S^2}{f_{\text{PQ}}^2}\right)^2 ,$$

$$a_3 = \frac{-4A_{\lambda}\lambda q_{H_u}^2f_S}{M_s^2} \left(g_{\text{PQ}}^2 - \frac{2\lambda^2f_S^2}{f_{\text{PQ}}^2}\right)$$

SUSY limit

- Massive vector multiplet in the SUSY limit.

$$M_s^2 = M_{\tilde{a}}^2 = M_a^2 = 2g_{\rm PQ}^2 f_{\rm PQ}^2$$

- Higgs quartic couplings

$$a_1 = \frac{1}{2}\lambda^2$$
, $a_2 = \frac{2q_{H_u}^2\lambda^2 f_S^2}{f_{PQ}^2} + \mathcal{O}(\lambda^4)$, $a_3 = 0$

- Effective Kahler potential after integrating out massive U(1) in SUSY limit

$$\mathcal{K}_{\text{eff}} = -\frac{g^2}{M_V^2} \left[\sum_a q_a \phi_a^{\dagger} \phi_a \right]^2 + \frac{g^2}{8M_V^4} \left[\bar{D}_{\dot{\alpha}} D_{\alpha} \left(\sum_a q_a \phi_a^{\dagger} \phi_a \right) \right]^2$$

Correction to Higgs mass

- Massive vector multiplet in SUSY limit.

$$M_s^2 = M_{\tilde{a}}^2 = M_a^2 = 2g_{\rm PQ}^2 f_{\rm PQ}^2$$

- For $\lambda < \Lambda_{\rm soft}/M_s$

$$a_1 = \mathcal{O}(\lambda^2) , \ a_2 = \frac{g_{PQ}^2 q_{H_u}^2 \Delta M_s^2}{2M_s^2} , \ \Delta M_s^2 \sim \Lambda_{soft}^2$$
 $a_3 = \frac{-4A_\lambda \lambda g_{PQ}^2 q_{H_u}^2 f_S}{M_s^2}$

- Tree level correction to Higgs mass

$$(m_h^2)_{\text{tree}} \approx m_Z^2 \cos^2 2\beta + \left(\frac{a_1}{2}\sin^2 2\beta + 2a_2 + a_3\sin 2\beta\right) v_{\text{EW}}^2$$

O(1) corrections to h-yy

$$-\frac{\alpha}{2\pi} \frac{h}{v} \delta I F_{\mu\nu} F^{\mu\nu} \qquad \delta I_{\text{top}} \simeq 0.5 \quad \delta I_W \simeq -2.1$$

Why is it not so easy?

- SM $h \rightarrow \gamma \gamma$ is given by W and top loops.
 - W, t: light (~100 GeV), large coupling to the Higgs.
 - New states must be similar.
- In SUSY, new particles can be either fermion or boson.
- New fermion:
 - Yukawa like coupling: h_{u,d} DN.
 - Need to check EWPT.

Light scalar?

- Safest way: $\lambda H^{\dagger}H$ S[†]S (Higgs portal).
 - \triangleright λ <0, opposite to the top contribution, enhance $h\rightarrow\gamma\gamma$
- However, this does not work for SUSY.
 - ▶ H[†]H S[†]S is of the form of F-term coupling to sfermions.
 - Phowever, cancellation of quadratic divergence fixes λ>0. For example, for stop, $λ=|y_t|^2$.

More specifically

$$-\frac{\alpha}{2\pi} \frac{h}{v} \delta I F_{\mu\nu} F^{\mu\nu} \qquad \delta I \propto \frac{\partial}{\partial h} \log(\det M_{\tilde{f}}(h))$$

$$M_{\tilde{f}}(h) = \begin{pmatrix} m_{\tilde{f}_L}^2 + \frac{y^2}{2}h^2 + \dots & yhX_f \\ yhX_f & m_{\tilde{f}_R}^2 + \frac{y^2}{2}h^2 + \dots \end{pmatrix}$$

$$\frac{\partial}{\partial h} \log(\det M_{\tilde{f}}(h=v)) \propto \frac{M_{\tilde{f}_L}^2 + M_{\tilde{f}_R}^2 - X_f^2}{M_{\tilde{f}_L}^2 M_{\tilde{f}_R}^2 - X_f^2 (yv)^2}$$

- Large off-diagonal mixing, X_f, necessary for enhancement.
- Split scalar spectrum.

boosting the di-photon mode in

- light stau!

Carena, Gori, Shah, Wagner. 1112.3336

Signal

$$m_{L_3} = m_{e_3} = 280 \text{ GeV}, \ \tan \beta = 60, \qquad \mu = 650 \text{ GeV}, M_1 = 35 \text{ GeV}$$

 $m_{\tilde{\tau}_1} \sim 95 \text{ GeV}, m_{\tilde{\nu}_{\tau}} \sim 270 \text{ GeV}$

		Signature	8 TeV LHC (fb)	14 TeV LHC (fb)	
Maybe	$pp \to \tilde{\tau}_1 \tilde{\tau}_1$	$2 au, E_T$	55.3	124.6	
	$pp \to \tau_1 \tau_2$	$2 au, ar{Z}, ar{E}_{T}$	1.0	3.2	
	$pp \to \tilde{\tau}_2 \tilde{\tau}_2$	$2 au, 2Z, E_T$	0.15	0.6	
	$pp \to \tilde{\tau}_1 \tilde{\nu}_{\tau}$	$2 au, W, E_T$	14.3	38.8	
D 111	$pp \to \tilde{\tau}_2 \tilde{\nu}_{\tau}$	$2 au,W,Z,E_T$	0.9	3.1	
Possible!	$pp \to \tilde{\nu}_{\tau} \tilde{\nu}_{\tau}$	$2 au, 2W, E_T$	1.6	5.3	

Signature.

$$pp \to \tilde{\tau_1} [\tilde{\nu}_{\tau} (\to W^{\pm} \tilde{\tau}_1^{\mp})] \to \ell^{\pm} \tau \bar{\tau} + \text{MET}$$

 $pp \to \tilde{\tau_1} \tilde{\tau_1} \to \tau \bar{\tau} + \text{MET}$

 Existing searches focus either on long cascades, or chargino-neutralino production.

Associated production:

 $pp \to \tilde{\tau_1} \tilde{\nu}_{\tau}$

Background

- \gg W+Z/ γ *
- W+ jets (jets faking T).
 - \Box T eff: ~60%, jet rejection ~ 50

- Basic cuts

$$p_T^{\tau(j)} > 10 \text{ GeV}, \ \Delta R > 0.4 \quad |\eta| < 2.5$$

$$p_T^{\ell} > 70 \text{ GeV}$$
 $E_T > 70$

Additional cuts for W+jets

hard tau veto
$$p_T^{ au} < 75~{
m GeV}$$

LHC 8 TeV

	Total (fb)	Basic (fb)	Hard Tau (fb)
Signal	0.6	0.16	0.07
Physical background, $W + Z/\gamma^*$	15	0.25	$\lesssim 10^{-3}$
W+ jets background	4×10^3	26	0.3

LHC 14 TeV

	Total (fb)	Basic (fb)	Hard Tau (fb)
Signal	1.6	0.26	0.11
Physical background, $W + Z/\gamma^*$	27	0.32	$\lesssim 10^{-3}$
W+ jets background	10^4	39	0.25

Using exotics in U(1)PQ scenario

- $U(1)_{PQ}$ is anomalous. We need to add exotics to cancel anomaly.
- It is possible that exotics can couple to the Higgs, and carry electric charge.
- We explore the possibility of having light exotics with sizable coupling to the Higgs.
 - Enhanced h→yy
 - Consistent with constraints (precision, collider)

Exotics, an example

gauge charge under $SU(3)_C$ $SU(2)_L$ $U(1)_Y$ $U(1)_{PQ}$

Particles	Gauge charges	Particles	Gauge charges
$ ho_{\mathbf{i}}$	(1; 2; -1/2; 1/2)	$\mathbf{Q_{i}}$	(3; 2; 1/6; 1/2)
$ar{ extbf{N}_{ extbf{i}}}$	(1; 1; 0; 1/2)	$ar{\mathrm{u}}_{\mathrm{i}}$	$(\bar{3}; 1; -2/3; 1/2)$
$ar{\mathbf{e_i}}$	(1; 1; 1; 1/2)	$ar{ ext{d}}_{ ext{i}}$	$(\bar{3}; 1; 1/3; 1/2)$
$ m H_d$	(1; 2; -1/2; -1)	$ m H_u$	(1; 2; 1/2; -1)
T_1	(3; 1; 1/3; -1)	${ m T_1^c}$	$(\bar{3}; 1; -1/3; -1)$
T_2	(3; 1; 2/3; -1)	${ m T_2^c}$	$(\overline{3}; 1; -2/3; -1)$
T_3	(3; 1; 2/3; -1)	${ m T_3^c}$	$(\bar{3}; 1; -2/3; -1)$
D_1	(1; 2; 1/2; -1)	$ m D_1^c$	(1; 2; -1/2; -1)
$\mathbf{D_2}$	(1; 2; 1/2; -1)	$\mathbf{D_2^c}$	(1; 2; -1/2; -1)
X	(1; 1; 1; 2)	$\mathbf{X^c}$	(1; 1; -1; 2)
N	(1; 1; 0; 2)	N^c	(1; 1; 0; 2)
S	(1; 1; 0; 2)	$\mathbf{S^c}$	(1; 1; 0; -2)
S_1	(1; 1; 0; -4)	$\mathbf{S_{1}^{c}}$	(1; 1; 0; 4)

Exotics, an example

gauge charge under $SU(3)_C$ $SU(2)_L$ $U(1)_Y$ $U(1)_{PQ}$

Particles	Gauge charges	Particles	Gauge charges
${f L_i}$	(1; 2; -1/2; 1/2)	$\mathbf{Q_{i}}$	(3; 2; 1/6; 1/2)
$ar{ extbf{N}_{ ext{i}}}$	(1; 1; 0; 1/2)	$ar{ ext{u}}_{ ext{i}}$	$(\overline{3}; 1; -2/3; 1/2)$
$ar{\mathbf{e}_{\mathbf{i}}}$	(1; 1; 1; 1/2)	$ar{ ext{d}}_{ ext{i}}$	$(\overline{3}; 1; 1/3; 1/2)$
$ m H_d$	(1; 2; -1/2; -1)	$ m H_u$	(1; 2; 1/2; -1)
T_1	(3; 1; 1/3; -1)	${ m T_1^c}$	$(\overline{3}; 1; -1/3; -1)$
$\mathbf{T_2}$	(3; 1; 2/3; -1)	$\mathbf{T_2^c}$	$(\overline{3}; 1; -2/3; -1)$
${ m T_3}$	(3; 1; 2/3; -1)	${ m T_3^c}$	$(\overline{3}; 1; -2/3; -1)$
D_1	(1; 2; 1/2; -1)	${ m D_1^c}$	(1; 2; -1/2; -1)
$\mathbf{D_2}$	(1; 2; 1/2; -1)	$\mathbf{D^{c}_{2}}$	(1; 2; -1/2; -1)
\mathbf{X}	(1; 1; 1; 2)	$\mathbf{X^c}$	(1; 1; -1; 2)
N	(1; 1; 0; 2)	N^c	(1; 1; 0; 2)
S	(1; 1; 0; 2)	S^{c}	(1; 1; 0; -2)
S_1	(1; 1; 0; -4)	$\mathbf{S_1^c}$	(1; 1; 0; 4)

Can couple to Higgs

Exotics, an example

gauge charge under $SU(3)_C$ $SU(2)_L$ $U(1)_Y$ $U(1)_{PQ}$

Particles	Gauge charges	Particles	Gauge charges
$oxed{\mathbf{L_i}}$	(1; 2; -1/2; 1/2)	$\mathbf{Q_{i}}$	(3; 2; 1/6; 1/2)
$ar{ extbf{N}_{ ext{i}}}$	(1; 1; 0; 1/2)	$ar{ ext{u}}_{ ext{i}}$	$(\overline{3}; 1; -2/3; 1/2)$
$ar{f e_i}$	(1; 1; 1; 1/2)	$ar{ ext{d}}_{ ext{i}}$	$(\bar{3}; 1; 1/3; 1/2)$
$ m H_d$	(1; 2; -1/2; -1)	$ m H_u$	(1; 2; 1/2; -1)
T_1	(3; 1; 1/3; -1)	${ m T_1^c}$	$(\overline{3}; 1; -1/3; -1)$
$\mathbf{T_2}$	(3; 1; 2/3; -1)	$\mathbf{T_2^c}$	$(\overline{3}; 1; -2/3; -1)$
${ m T_3}$	(3; 1; 2/3; -1)	${ m T_3^c}$	$(\overline{3}; 1; -2/3; -1)$
D_1	(1; 2; 1/2; -1)	${ m D_1^c}$	(1; 2; -1/2; -1)
$\mathbf{D_2}$	(1; 2; 1/2; -1)	$\mathbf{D^{c}_{2}}$	(1; 2; -1/2; -1)
\mathbf{X}	(1; 1; 1; 2)	$\mathbf{X^c}$	(1; 1; -1; 2)
N	(1; 1; 0; 2)	N^c	(1; 1; 0; 2)
S	(1; 1; 0; 2)	S^c	(1; 1; 0; -2)
S_1	(1; 1; 0; -4)	$\mathbf{S_1^c}$	(1; 1; 0; 4)

Can couple to Higgs

$$W = \gamma_{1,2}(H_u D_{1,2} X^c + H_d D_{1,2} N^c) + (D \to D^c, X^c \to X, N^c \to N) + M_D D_{1,2} D_{1,2}^c + M_X X X^c + M_N N N^c + \dots$$

Exampls: light scalar

- $g_{PQ} = 0.6$, $f_{PQ} = 4 \text{ TeV}$, $\lambda = 0.2$, $tan\beta = 5$
- $A_{\lambda}/f_{PQ} = 0.4$, $\Delta m_s/M_s = 0.4$
- $\gamma_{1,2} = 0.1$, $\gamma A_1 = -950$ GeV, $M_D = 600$ GeV, $M_{x,N} = 400$ GeV
- $m_{stop} = 400$ GeV.
- $m_h = 125$ GeV, $h \rightarrow \gamma \gamma \approx 1.5 \times SM$
- lightest charged scalar: 130 GeV.

Examples: light fermion

- $g_{PQ} = 0.6$, $f_{PQ} = 2.5$ TeV, $\lambda = 0.25$, $tan\beta = 1.3$
- $A_{\lambda}/f_{PQ} = 0.4$, $\Delta m_s/M_s = 0.4$
- $\gamma_{1,2}$ = 1.6, γA_1 = 300 GeV, M_D = 500 GeV, $M_{x,N}$ = 300 GeV
- $m_{stop} = 200$ GeV.
- $m_h = 125$ GeV, $h \rightarrow \gamma \gamma \approx 2 \times SM$
- lightest charged fermion: 108 GeV.

Light fermion scenario in more detail

Couplings of the light states.

- Discovery in direct SUSY searches might be difficult.
- Modification of Higgs decay maybe their first signal.

Connection to EWPT

Work in progress with B. Batell and S. Gori

Precision Electroweak Data

Consider two possibilities

- New physics gives rise to AFB
- AFB is "wrong" (fluctuation, ...)
 - new physics fix the EWPT fit.
- Possible connection to higgs pheno, $h \rightarrow \gamma \gamma$?

"fix" AFB with new physics

Beautiful Mirrors

Choudhury, Tait, Wagner '01

Basic idea: Mix new vector-like quark with bottom quark

$$\mathcal{L} \supset -(\bar{b}'_L \ \bar{B}'_L) \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \begin{pmatrix} b'_R \\ B'_R \end{pmatrix} + \text{h.c.}$$

Diagonalize mass matrix via rotations of $b_{i(L,R)}$, with angles $\theta_{L,R}$

Z boson interactions:
$$\mathcal{L} \supset \frac{g}{c_w} Z_\mu \sum_{ij} \bar{b}_i \gamma^\mu (L_{ij} P_L + R_{ij} P_R) b_j$$

Shifts in Zbb couplings:

$$\delta g_{Lb} = \left(t_{3L} + \frac{1}{2}\right) s_L^2, \qquad \delta g_{Rb} = t_{3R} s_R^2,$$

Singles out 3 vector-like representations:

$$\Psi_{L,R} \sim (3,2,1/6), (3,2,-5/6), (3,3,2/3)$$

Slides from Brian Batell

Example:

$$\Psi \sim (3, 2, -5/6) \sim \begin{pmatrix} B \\ X \end{pmatrix}$$

$$t_{3R}^B = \frac{1}{2}$$

$$t_{3R}^B = \frac{1}{2} \qquad \qquad \delta g_{Rb} = \frac{1}{2} s_R^2 = 0.02$$

 $\sin \theta_R \approx 0.2$

Consider EFT with general Higgs couplings:

$$\mathcal{L} \supset -y_1 \bar{Q} H b_R - y_2 \bar{\Psi}_L H^{\dagger} b_R - M \bar{\Psi}_L \Psi_R + \text{h.c.}$$

$$-a\frac{|H|^2}{\Lambda}\bar{\Psi}_L\Psi_R - b\frac{|H|^2}{\Lambda^2}\bar{Q}Hb_R - c\frac{|H|^2}{\Lambda^2}\bar{\Psi}_LH^{\dagger}b_R + \dots + \text{h.c.}$$

$$\to -\left(\bar{b}_L \ \bar{B}_L\right) \left\{ \begin{pmatrix} Y_1 + \frac{bv^3}{2\sqrt{2}\Lambda^2} & 0 \\ Y_2 + \frac{cv^3}{2\sqrt{2}\Lambda^2} & M + \frac{av^2}{2\Lambda} \end{pmatrix} + h \begin{pmatrix} \frac{Y_1}{v} + \frac{3bv^2}{2\sqrt{2}\Lambda^2} & 0 \\ \frac{Y_2}{v} + \frac{3cv^2}{2\sqrt{2}\Lambda^2} & \frac{av}{\Lambda} \end{pmatrix} \right\} \begin{pmatrix} b_R \\ B_R \end{pmatrix} + \text{h.c.}$$

Diagonalize mass matrix via rotations...

Higgs physics

see also Wagner, Morrissey '03 for (3, 2, 1/6)

$$\mathcal{L}_{hqq} \supset -\xi_{hbb} \frac{m_b}{v} h \bar{b}b - \xi_{hBB} \frac{m_B}{v} h \bar{B}B$$
$$-\xi_{hXX} \frac{m_X}{v} h \bar{X}X$$

$$\xi_{hbb} \approx c_R^2 + \frac{bv^3}{\sqrt{2}m_b\Lambda^2} - \frac{c\,s_R v^3}{\sqrt{2}m_B\Lambda^2}$$

$$\xi_{hBB} \approx s_R^2 + \frac{av^2}{m_B \Lambda} + \frac{c \, s_R v^3}{\sqrt{2} m_B \Lambda^2}$$

$$\xi_{hXX} = \frac{av^2}{m_X \Lambda}$$

To enhance $\gamma\gamma$ rate:

- Suppress $h \to b \overline{b}$ partial width: $\xi_{hbb} < 1$
- Heavy quarks interfere constructively with SM $h \to \gamma \gamma$ amplitude: $\xi_{hBB}, \xi_{hXX} < 0$

$$a = -1, b = -0.01, c = 0, m_B = 600 \,\text{GeV}$$

- Enhancement in $\gamma\gamma$
- Suppression in gluon fusion
- "Acceptable" suppression in $b\overline{b}$

Ignore Afb

Electroweak data (w/o A_{FB}^b) indicate a positive T, negative S

Simplest example: a second scalar doublet

$$S \sim (1, 2, 1/2) = \begin{pmatrix} S^+ \\ \frac{1}{\sqrt{2}} (S_0^R + iS_0^I) \end{pmatrix}$$

$$V \supset m^2 |S|^2 + \lambda_1 |S|^2 |H|^2 + \lambda_2 (H^{\dagger} S)(S^{\dagger} H) + [\lambda_3 (H^{\dagger} S)(H^{\dagger} S) + \text{h.c.}] + \dots$$

 hS^+S^- coupling

contribution to $\,h \to \gamma \gamma$

$$S \simeq \frac{\lambda_2 v^2}{24\pi m^2}$$

$$T \simeq \frac{v^4}{192\pi s_w^2 M_W^2 m^2} [(\lambda_2)^2 - 4(\lambda_3)^2]$$

$Br(h \to \gamma \gamma)/SM$

Require light charged scalars for big enhancement

Requires mass splittings ~ 60-70 GeV

Conclusion

- 2012 is going to be a year of Higgs.
 - Confirm a light Higgs signal, or
 - ▶ Rule out SM-like weakly coupled Higgs.
- 125 GeV Higgs has significant implications on SUSY parameter space
 - Heavy scalar.
 - Extension of MSSM.
- Watch for deviations of Higgs properties.
 - Special, complicated, models.

Modify $Zb_R \overline{b}_R$ coupling

Haber, Logan '99 Choudhury, Tait, Wagner '01

$$\mathcal{L} = \frac{g}{c_w} \bar{b} \gamma^\mu \left(g_{Lb} P_L + g_{Rb} P_R \right) b$$

$$g_{Lb} = -\frac{1}{2} + \frac{1}{3}s_w^2 \approx -0.43$$
$$g_{Rb} = \frac{1}{3}s_w^2 \approx 0.0771$$

Goal: shift A_{FB}^b without affecting R_b

$$A_{FB} = \frac{3}{4} \frac{g_{Le}^2 - g_{Re}^2}{g_{Le}^2 + g_{Re}^2} \frac{g_{Lb}^2 - g_{Rb}^2}{g_{Lb}^2 + g_{Rb}^2} \qquad R_b \equiv \frac{\Gamma(Z \to b\bar{b})}{\Gamma(Z \to \text{hadrons})} \simeq \frac{g_{Lb}^2 + g_{Rb}^2}{\sum_q [g_{Lq}^2 + g_{Rq}^2]}$$

Z-pole data allows 4 solutions in $(\delta g_{Lb}, \delta g_{Rb})$, off-peak data for A_{FB}^b eliminate 2 possible solutions

Data prefers a bigger shift in δg_{Rb} , smaller shift in δg_{Lb}

Fit: 2 solutions

Kumar, Shepherd, Tait, Vega-Morales '10

Large negative δg_R^b solution

 $\delta g_{Lb} \sim 0.003$ $\delta g_{Rb} \sim -0.17$

Small positive δg_R^b solution

 $\delta g_{Lb} \sim 0.003$

 $\delta g_{Rb} \sim 0.02$

Direct constraints on mirror quarks

see also Kumar, Shepherd, Tait, Vega-Morales '10

$B \rightarrow bZ$	ATLAS, 1204.1265	400 GeV
$B \to tW$	CMS, I204:1088 (3l or 2SSI+b-jet)	611 GeV
$B \rightarrow bh$		_
$X \to bW$	CMS, PAS-EXO-11-099 (lepton + jets)	560 GeV

Precise bounds depend on branching ratios (in progress)

Light fermion benchmark

$g_{ m PQ}$	$f_{\rm PQ}~({\rm GeV})$	$f_S/f_{ m PQ}$	$A_{\lambda}/f_{ m PQ}$	λ
0.6	3750	0.4	0.4	0.2
$\tan \beta$	$A_{\gamma} \; (\mathrm{GeV})$	A_{γ_c} (GeV)	γ, γ_c	$M_D ext{ (GeV)}$
1.3	300	300	1.8	480
M_X (GeV)	$m_{\tilde{D},\tilde{X},\tilde{N}}$ (GeV)	δ	$X_t \text{ (GeV)}$	$M_{\tilde{t}} \; (\mathrm{GeV})$
360	900	0.5	600	300
a_1	a_2	a_3	$B_{\mu} (10^4 \text{ GeV}^2)$	$\mu_{\mathrm{eff}} \; (\mathrm{GeV})$
0.02	0.11	-0.01	45	300
$m_h \text{ (GeV)}$	$m_{\psi 1^c} \; (\mathrm{GeV})$	$m_{\psi 1^0} \; (\mathrm{GeV})$	$m_{\phi 1^c} \; (\mathrm{GeV})$	$m_{\phi 1^0} \; (\mathrm{GeV})$
125	106	106	882	882
$R(h \to \gamma \gamma)$	ΔS	ΔT		
1.5	0.15	0.14		

Light scalar benchmark

$g_{ m PQ}$	$f_{\rm PQ}~({\rm GeV})$	$f_S/f_{ m PQ}$	$A_{\lambda}/f_{ m PQ}$	λ
0.6	3750	0.4	0.4	0.2
$\tan \beta$	$A_{\gamma} \; (\mathrm{GeV})$	A_{γ_c} (GeV)	γ, γ_c	$M_D \text{ (GeV)}$
5	-950	100	0.2	600
M_X (GeV)	$m_{\tilde{D},\tilde{X},\tilde{N}}$ (GeV)	δ	$X_t \text{ (GeV)}$	$M_{\tilde{t}} \; (\mathrm{GeV})$
400	100	0.5	800	400
a_1	a_2	a_3	$B_{\mu} \ (10^4 \ {\rm GeV}^2)$	$\mu_{\rm eff}~({\rm GeV})$
0.017	0.106	-0.014	45	300
$m_h (\text{GeV})$	$m_{\psi 1^c} \; (\mathrm{GeV})$	$m_{\psi 1^0} \; ({\rm GeV})$	$m_{\phi 1^c} \; (\mathrm{GeV})$	$m_{\phi 1^0} \; ({ m GeV})$
124	396	396	120	382
$R(h \to \gamma \gamma)$	ΔS	ΔT		
1.9	0.03	0.11		